Polymorphic susceptibility to the molecular causes of neural tube defects during diabetic embryopathy.
نویسندگان
چکیده
Previously, we demonstrated that neural tube defects (NTDs) are significantly increased in a mouse model of diabetic pregnancy. In addition, expression of Pax-3, a gene encoding a transcription factor required for neural tube development, is significantly decreased. This suggests that diabetic embryopathy results from impaired expression of genes regulating essential morphogenetic processes. Here, we report that in one mouse strain, C57Bl/6J, embryos are resistant to the effects of maternal diabetes on NTDs and Pax-3 expression, in contrast to a susceptible strain, FVB, in which maternal diabetes significantly increases NTDs (P = 0.02) and inhibits Pax-3 expression (P = 0.01). Resistance to NTDs caused by diabetic pregnancy is a dominant trait, as demonstrated by heterozygous embryos of diabetic or nondiabetic mothers of either strain. There was no significant difference between strains in expression of genes that regulate free radical scavenging pathways, suggesting that susceptibility to oxidative stress does not account for the genetic differences. Understanding the genetic bases for differential susceptibility to altered gene expression and NTDs in diabetic mice may be important in delineating the mechanisms by which maternal hyperglycemia interferes with embryo gene expression. Moreover, if susceptibility to diabetic embryopathy is variable in humans as well as in mice, it may be possible to screen individuals at increased risk for this complication of diabetes.
منابع مشابه
Diacylglycerol production and protein kinase C activity are increased in a mouse model of diabetic embryopathy.
Activation of the diacylglycerol-protein kinase C (DAG-PKC) cascade by excess glucose has been implicated in vascular complications of diabetes. Its involvement in diabetic embryopathy has not been established. We examined DAG production and PKC activities in embryos and decidua of streptozotocin (STZ)-diabetic or transiently hyperglycemic mice during neural tube formation. STZ diabetes signifi...
متن کاملCellular Stress, Excessive Apoptosis, and the Effect of Metformin in a Mouse Model of Type 2 Diabetic Embryopathy
Increasing prevalence of type 2 diabetes in women of childbearing age has led to a higher incidence of diabetes-associated birth defects. We established a model of type 2 diabetic embryopathy by feeding 4-week-old female mice a high-fat diet (HFD) (60% fat). After 15 weeks on HFD, the mice showed characteristics of type 2 diabetes mellitus (DM) and were mated with lean male mice. During pregnan...
متن کاملOxidative Stress–Induced JNK1/2 Activation Triggers Proapoptotic Signaling and Apoptosis That Leads to Diabetic Embryopathy
Oxidative stress and apoptosis are implicated in the pathogenesis of diabetic embryopathy. The proapoptotic c-Jun NH(2)-terminal kinases (JNK)1/2 activation is associated with diabetic embryopathy. We sought to determine whether 1) hyperglycemia-induced oxidative stress is responsible for the activation of JNK1/2 signaling, 2) JNK1 contributes to the teratogenicity of hyperglycemia, and 3) both...
متن کاملIncreased DNA Methyltransferase 3b (Dnmt3b)-Mediated CpG Island Methylation Stimulated by Oxidative Stress Inhibits Expression of a Gene Required for Neural Tube and Neural Crest Development in Diabetic Pregnancy
Previous studies have shown that diabetic embryopathy results from impaired expression of genes that are required for formation of embryonic structures. We have focused on Pax3, a gene that is expressed in embryonic neuroepithelium and is required for neural tube closure. Pax3 expression is inhibited in embryos of diabetic mice due to hyperglycemia-induced oxidative stress. DNA methylation sile...
متن کاملc-Jun NH2-Terminal Kinase 1/2 and Endoplasmic Reticulum Stress as Interdependent and Reciprocal Causation in Diabetic Embryopathy
Embryos exposed to high glucose exhibit aberrant maturational and cytoarchitectural cellular changes, implicating cellular organelle stress in diabetic embryopathy. c-Jun-N-terminal kinase 1/2 (JNK1/2) activation is a causal event in maternal diabetes-induced neural tube defects (NTD). However, the relationship between JNK1/2 activation and endoplasmic reticulum (ER) stress in diabetic embryopa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 51 9 شماره
صفحات -
تاریخ انتشار 2002